Computation graph
ComputationGraph
A class to represent Computational graph and visualization of pytorch model
Attributes:
Name | Type | Description |
---|---|---|
visual_graph |
Digraph
|
Graphviz.Digraph object to represent computational graph of pytorch model |
root_container |
NodeContainer
|
Iterable of TensorNodes to represent all input/root nodes of pytorch model. |
show_shapes |
bool
|
Whether to show shapes of tensor/input/outputs |
hide_module_functions |
bool
|
Some modules contain only torch.function and no submodule, e.g. nn.Conv2d. They are usually implemented to do one type of computation, e.g. Conv2d -> 2D Convolution. If True, visual graph only displays the module itself, while ignoring its inner functions. |
hide_inner_tensors |
bool
|
Whether to hide inner tensors in graphviz graph object |
node_hierarchy |
dict
|
Represents nested hierarchy of ComputationNodes by nested dictionary |
Source code in torchview/computation_graph.py
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 |
|
__init__(visual_graph, root_container, show_shapes=True, expand_nested=False, hide_inner_tensors=True, hide_module_functions=True, roll=True, depth=3)
Resets the running_node_id, id_dict when a new ComputationGraph is initialized. Otherwise, labels would depend on previous ComputationGraph runs
Source code in torchview/computation_graph.py
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
|
add_node(node, subgraph=None)
Adds node to the graphviz with correct id, label and color settings. Updates state of running_node_id if node is not identified before.
Source code in torchview/computation_graph.py
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
|
collect_graph(**kwargs)
Adds edges and nodes with appropriate node name/id (so it respects properties e.g. if rolled recursive nodes are given the same node name in graphviz graph)
Source code in torchview/computation_graph.py
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
|
fill_visual_graph()
Fills the graphviz graph with desired nodes and edges.
Source code in torchview/computation_graph.py
120 121 122 123 124 125 |
|
get_node_label(node)
Returns html-like format for the label of node. This html-like label is based on Graphviz API for html-like format. For setting of node label it uses graph config and html_config.
Source code in torchview/computation_graph.py
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
|
is_node_visible(compute_node)
Returns True if node should be displayed on the visual graph. Otherwise False
Source code in torchview/computation_graph.py
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
|
render_edges()
Records all edges in self.edge_list to the graphviz graph using node ids from edge_list
Source code in torchview/computation_graph.py
134 135 136 137 138 139 140 141 |
|
reset_graph_history()
Resets to id config to the setting of empty visual graph needed for getting reproducible/deterministic node name and graphviz graphs. This is especially important for output tests
Source code in torchview/computation_graph.py
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
|
resize_graph(scale=1.0, size_per_element=0.3, min_size=12)
Resize the graph according to how much content it contains. Modify the graph in place. Default values are subject to change, so far they seem to work fine.
Source code in torchview/computation_graph.py
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 |
|
rollify(cur_node)
Rolls computational graph by identifying recursively used Modules. This is done by giving the same id for nodes that are recursively used. This becomes complex when there are stateless and torch.functions. For more details see docs
Source code in torchview/computation_graph.py
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
|
compact_list_repr(x)
returns more compact representation of list with repeated elements. This is useful for e.g. output of transformer/rnn models where hidden state outputs shapes is repetation of one hidden unit output
Source code in torchview/computation_graph.py
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 |
|
get_output_id(head_node)
This returns id of output to get correct id. This is used to identify the recursively used modules. Identification relation is as follows: ModuleNodes => by id of nn.Module object Parameterless ModulesNodes => by id of nn.Module object FunctionNodes => by id of Node object
Source code in torchview/computation_graph.py
462 463 464 465 466 467 468 469 470 471 472 473 474 475 |
|