Recorder tensor
Recorder
Context Manager that sets modules forward and torch creation ops to record them in computation graph
Source code in torchview/recorder_tensor.py
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
|
RecorderTensor
Bases: Tensor
Subclass of torch.Tensor used for constructing visual computation graph.
This class stores list of TensorNode objects to keep record of Nodes during forward propagation. The torch_function is also overriden to record needed nodes for visual computation graph.
Attributes:
Name | Type | Description |
---|---|---|
tensor_nodes |
list[TensorNode] List of TensorNode objects to store relevant TensorNodes |
Source code in torchview/recorder_tensor.py
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
|
__torch_function__(func, types, args=(), kwargs=None)
classmethod
Calls torch functions for RecorderTensor subclass of torch.Tensor Forward prop => Construct Function Node => Construct Output TensorNode Args: The same arguments as that of original torch_function except that the tensor that originated from input (through forward prop) are RecorderTensors
Source code in torchview/recorder_tensor.py
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
|
attach_node(kwargs, tensor_to_node=None)
Creates the function to attach TensorNodes, needed for nested calls
Source code in torchview/recorder_tensor.py
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
|
insert_empty_pass_node(recorded_tensor, out_node)
First, inserts empty-pass node as a child of tensor nodes. Then, inserts TensorNode as a child of this empty-pass node
Source code in torchview/recorder_tensor.py
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 |
|
module_forward_wrapper(model_graph)
Wrapper for forward functions of modules
Source code in torchview/recorder_tensor.py
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
|
pop_after_forward(r_in, recorded_output)
Removes/pops nodes from RecorderTensors to maintain correct nodes Two types of process exist for types of modules: Non-inplace ops => pop auxiliary nodes In-place ops => pop input nodes since inplace ops overwrites input in memory.
Source code in torchview/recorder_tensor.py
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
|
process_output_node(cur_node)
Returns function to update output node after forward pass of nn.Modules
Source code in torchview/recorder_tensor.py
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 |
|
reduce_data_info(recorded_data, action_fn, collected, **kwargs)
Apply action_fn to RecorderTensor inside recorded_data to collect info of input data into collected (Iterable) e.g. shape of RecorderTensor
Source code in torchview/recorder_tensor.py
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
|
traverse_data_inplace(recorded_data, action_fn, **kwargs)
Apply action_fn RecorderTensor objects inside recorded_data to change data Usuall action_fn is a function that transforms RecorderTensor in memory
Source code in torchview/recorder_tensor.py
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
|